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Abstract  
The neural TTS paradigm synthesises significantly better-qual-
ity speech than the previous paradigm of HMM-based statisti-
cal parametric speech synthesis (SPSS). However, it requires a 
large amount of time and a larger corpus to learn the align-
ments between text and speech because of the underlying non-
monotonic attention mechanism. This paper presents the bene-
fits of merging a neural TTS system with a Hidden Markov 
Model (HMM) thus mixing these two paradigms and getting the 
best of both worlds. We replace the underlying attention mech-
anism in a neural TTS with an autoregressive left-to-right no-
skip HMM defined by a neural network. This results in a system 
which learns to speak 10 times faster, requires fewer training 
samples, does not break down into gibberish, is smaller in size, 
is fully probabilistic, and allows easy control over the speaking 
rate without compromising the naturalness of the audio. 

Introduction 
Text-to-Speech (TTS) also referred to as speech synthe-
sis, aims to synthesise human-like natural and intelligible 
speech from text. Over the past decade, there has been a 
paradigm shift from the statistical parametric speech syn-
thesis (SPSS) (Zen et al., 2009) to Neural TTS  (Tan et 
al., 2021). This transition mainly occurred because of the 
superior synthesis quality of Deep Neural Network 
(DNN)-based TTS systems, along with the possibility of 
synthesising without the need for extensive feature engi-
neering. Generally, Neural TTS is split into two ele-
ments: an acoustic model and a neural vocoder. The 
acoustic model is responsible for generating an interme-
diate audio representation from the text, while the vo-
coder is responsible for transforming those intermediate 
audio representations into a waveform. Some state-of-
the-art neural TTS systems like Tacotron 2 (Shen et al., 
2018), Glow TTS (Kim et al., 2020), etc. use mel-spec-
trograms as an intermediate audio representation and 
combine it with neural vocoders like WaveNet (Oord et 
al., 2016), HiFi-GAN (Kong et al., 2020), etc. to generate 
high-quality speech.    

Initially integrating deep neural networks into 
HMM-based speech TTS increased the naturalness, but 
an externally forced alignment was obligatory for them 
to synthesise good quality speech (Watts et al., 2016). 
This issue of forced alignment was resolved with the use 
of an attention mechanism in the neural sequence-to-se-
quence TTS systems (Shen et al., 2018; Wang et al., 
2017), where attention was applied between the context 
vector generated from the input text and the correspond-
ing mel-spectrogram frame. Attention takes a long time 
to form, however, and it requires a substantial amount of 
training data. Additionally, it is non-monotonic in nature 
and does not enforce a sequential ordering of speech 
sounds, which causes synthesis that is susceptible to bab-
bling, stuttering, or even unintelligible gibberish. While 
most components of a Neural TTS system, the front-end 
encoder, the intermediate audio representation (mel-
spectrograms), and acoustic feedback of autoregression 
grant a major performance boost in the synthesis quality, 

attention impedes the ability to learn to generate good 
quality speech quickly (Watts et al., 2019). 

In this paper, we replaced the attention mechanism 
in Tacotron 2 (Shen et al., 2018) with a left-to-right no-
skip hidden Markov model. The resulting system ob-
tained is thus smaller in parameter size, requires less 
training data, maximises the exact likelihood of the data, 
learns to speak and align much quicker, does not babble 
and allows for easy control over the speaking rate with a 
quantile-based transition. For synthesised audio exam-
ples and code please visit our demo page: 
https://shivammehta007.github.io/Neural-HMM/ 

Material and methods 
Neural HMMs use the best elements of the Neural TTS 
based system and hidden Markov model-based Statisti-
cal Parametric Speech Synthesis (SPSS). The design 
choices were made based on the analysis of the pros and 
cons of both paradigms as described in the paper (Watts 
et al., 2019), which analysed both systems and realised 
the importance of different components in both para-
digms. We mixed those components to get the best of 
both worlds. The architecture of the mixed TTS system 
consists of:  

1. A learned front-end encoder instead of a rule-
based system of SPSS. This aids in the coartic-
ulation of words improves the prosody and al-
lows the system to handle out-of-vocabulary 
words without writing explicit rules for them. 

2. Autoregression helps the model provide feed-
back from the previously generated frames re-
sulting in higher acoustic quality and improved 
frame-level positional encoding, whereas 
HMMs had the problem of constant statistics 
per state resulting in inconsistent durations and 
worse acoustic quality. 

3. Mel-spectrogram as an acoustic feature pro-
vided the ability to generate better quality wave-
forms with neural vocoders while in the case of 
HMMs the acoustic features used were the vo-
coder features with F0, which resulted in over 
averaging of the pitch. 

4. Instead of attention, neural HMMs use a left-to-
right no-skip hidden Markov model which en-
forces monotonic alignment and provides a 
more natural way of ending the synthesis. While 
the neural TTS system (Tacotron 2) has a stop 
token which might not generate a large enough 
value to stop the synthesis thus making the sys-
tem babble. 

A detailed architecture of neural HMM is presented 
in Figure 1. In the further section, we will shed more light 
on the mentioned design choices and their benefits.  



 

Figure 1. Neural HMM architecture 

Phonemes 
To synthesise speech in a monotonic nature we used 
phones as input to the Neural HMM instead of graph-
emes. This helped us to enforce a monotonic constraint 
as graphemes can have silent characters or different pro-
nunciations altogether. Another factor for this design 
choice was the research (Fong et al., 2019) which listed 
the advantages of using phonemes instead of graphemes 
for a better synthesis quality. 

Autoregression 
Autoregression, along with having multiple states per 
phone, helped the model to define better sub-phone po-
sitioning. Looking at the previously generated frame, not 
only generates consistent harmonics but also solves the 
issue of constant statistics for each state in hidden Mar-
kov models. Figure 2 displays the effect of autoregres-
sion on mel-spectrograms. The top part is synthesised 
from a non-autoregressive model therefore, the statistic 
of an individual state remains constant and harmonics in 
higher frequency were not generated because of over 
smoothing across time while the bottom part is synthe-
sised from an autoregressive neural HMMs thus there are 
different statistics even for a single state, therefore solv-
ing the problem of constant statistics per state of HMMs. 

 

Figure 2. Effect of autoregression on the synthesised mel-spec-
trogram 

Autoregression not only improves the synthesised 
mel-spectrograms but also improves the transition prob-
ability distribution of switching from one state to an-
other. Without autoregression, it follows a geometric dis-
tribution when it arbitrarily switches to the next state re-
sulting in inconsistent speech sound durations. On the 
contrary, with autoregression, the model is now aware of 
its position during a definite utterance of a phone and in-
creases the probability of transitioning to the next state 
as it approaches the end of the phone’s utterance. Figure 

3 shows this phenomenon. We can see with autoregres-
sion, the transition probability for each state differs at 
each synthesis timestep, gradually increasing towards 
the end of the state’s utterance while without autoregres-
sion, it generated a constant transition probability per 
state.  

 

Figure 3. Effect of autoregression on transition probability of 
states 

Left-to-right No-skip HMM 
Since we used phones as the input to the Neural HMM 
TTS, we could reap the benefit from their acoustic prop-
erty and enforce monotonic constraints on the alignments 
between text and speech. This enables the alignments to 
be learned 10x faster compared to cumulative attention-
based Tacotron 2. This speedup helps the model to learn 
to speak faster and generate intelligible speech in as little 
as two hours of training. Since we use the forward algo-
rithm of HMM it also computes the exact likelihood of 
the data and optimises that with gradient-based optimi-
sation. During our experimentation, we found that using 
multiple states per phone improved the synthesis quality 
of utterance. This is useful, especially in the case of plo-
sives where it is challenging for only one state to define 
the acoustic sound of the phone. 

Experimentation Setup 
We used the same configuration of two models as de-
scribed in the paper (Mehta et al., 2022) this resulted in 
a 15.3M parameter neural HMM with 2 states per phone 
(NH2) configuration and a comparable configuration of 
Tacotron 2 without the post-net (T2-P) having 23.8M pa-
rameters. Both systems were trained for 30000 iterations 
with the training set of the LJSpeech dataset (Ito & 
Johnson, 2017). We extended the experiments with the 
use of a HiFi-GAN vocoder which was fine-tuned on 
mel-spectrograms of Tacotron 2 trained with LJSpeech 
as the neural vocoder for subjective evaluation, but any 
other compatible neural vocoder could also be used. The 
demo webpage has samples from both vocoder Wave-
Flow as in the original paper and HiFi-GAN.  

Evaluation of Neural HMM TTS 
We performed an objective evaluation and a subjective 
evaluation for the sentences synthesised by a neural 
HMM TTS system and a comparable Tacotron 2 config-
uration. 

Objective evaluation 
We synthesised test utterances of the LJSpeech dataset 
and transcribed them through Google’s commercial ASR 
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system. We used those transcribed texts to calculate the 
Word Error Rate (WER) every 500 iterations. 

Subjective evaluation 
We performed a MUSHRA like MOS evaluation to val-
idate the naturalness of the synthesised audio, the partic-
ipants were asked to listen to 3 sets of phonetically bal-
anced Harvard sentences, where each set containing 10 
utterances. The participants were asked to rate the natu-
ralness of the synthesised speech from 0 to 5.  

Results 
When trained on a full dataset of LJSpeech, the model 
started synthesising intelligible speech starting from 
1,500 iterations while attention based Tacotron 2 uttered 
gibberish until 15,000 iterations. But when the amount 
of training set was reduced to a mere 500 training utter-
ances. Tacotron 2 never learned to speak while neural 
HMM TTS remained unaffected by the low amount of 
data, deeming neural HMMs is very effective in a low 
resource setting. The result of the objective evaluation is 
plotted in figure 4 where we compare the WER of natural 
speech v/s Tacotron 2 without the post-net (T2-P) along 
with its 500 training utterances configuration v/s Neural 
HMMs with 2 states per phone (NH2) along with its 500 
training utterances configuration. 
 

 

Figure 4. WER of systems at different updates during training 

Tacotron 2 without the post-net (T2-P) gave 3.74 ± 
0.06 MOS and neural HMMs with 2 states per phone 
(NH2) gave 3.5 ± 0.07 MOS while reducing the number 
of parameters by 43.48 % in the NH2 configuration. We 
suspect this discrepancy between MOS is mainly be-
cause of two factors: first, NH2 has relatively less mod-
elling power compared to T2-P because of the smaller 
number of parameters in the former, and second, the vo-
coder HiFi-GAN was finetuned on the outputs of a 
Tacotron 2 system, therefore, the vocoder has more af-
finity to reduce noise and produce more natural-sounding 
waveforms while synthesising from a Tacotron 2 gener-
ated mel-spectrogram. It is also worth mentioning that no 
statistical difference was found between Tacotron 2 with 
post-net (T2+P) and Tacotron 2 without post net (T2-P) 
with HiFi-GAN, hinting that because of finetuning the 
HiFi-GAN is more robust to the artefacts present in mel-
spectrograms synthesised by the autoregressive part of a 
Tacotron 2 system. 

Conclusions 
In this paper, we present the use of Neural HMMs for 
text-to-speech synthesis, where attention in the Neural 
TTS system is replaced by a left-to-right no-skip hidden 
Markov model. We experimented by replacing cumula-
tive attention in Tacotron 2 with neural HMMs to syn-
thesise mel-spectrograms and use HiFi-GAN as a neural 
vocoder to further generate waveforms. The resulting 
system learns to speak 10 times faster (within 2 hours 

with LJSpeech), is 43.48% smaller in size, allows control 
over the speaking rate and does not break into gibberish 
with comparable naturalness.  

We believe such a system could speed up speech re-
search and development as it not only provides faster it-
erations but also can work very well in a low-resources 
setup. 
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